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A scaling law for the � relaxation time �, involving the ratio of a density-dependent energy to the thermal
energy, has been found to hold in many fragile glass-forming liquids. This scaling has been recently linked to
a local quantity nloc�� ,T� relating the variation of � with density to its variation with temperature. In many
fragile liquids, the variation of nloc�� ,T� is weak enough to take it as constant over the experimental tempera-
ture and density domain. We show that simulated liquid silica has an opposite behavior; close to Tg, nloc is
negative for moderate densities and exhibits a significant variation with � and T, reaching positive values for
higher temperature and/or densities. Moreover, those variations linearly correlate to a measure of the bonding
properties of the liquid.
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The main characteristic of supercooled liquids is the huge
variation of several quantities such as the shear static viscos-
ity � or the structural relaxation time � �1� when the liquid,
avoiding crystallization, goes from the liquid to the glassy
state: throughout the transition, these coefficients increase by
more than 14 orders of magnitude �2�. Although the liquid-
glass transition is still not fully understood, several major
advances have been performed during the last decades, one
of them being the classification into strong and fragile glass-
forming liquids according to the behavior of the structural
relaxation time � when plotted in the Angell diagram �2,3�.
Actually, no consensus has been reached so far on an ana-
lytical expression of � versus temperature at ambient pres-
sure, although the most commonly used is the Vogel-Fulcher
law: ln�� /�0�=B /kB�T−T0� where �0, B, and T0 are the re-
laxation time at high temperature, an activation energy, and a
temperature located below the liquid-glass transition tem-
perature, Tg, respectively.

Only quite recently have experimental developments al-
lowed the extension of the measurements over a significant
pressure range �4,5�. In order to take into account the in-
crease of relaxation time due to increased pressure, exten-
sions of the Vogel-Fulcher law under the form �=��T , P�
have been proposed �6�. Though such an expression is math-
ematically correct, another formulation can also be used and
leads to more insight. Let us express � under the form

� = �„���,T�… , �1�

where � is the mass density. Recent experiments �7–13� have
shown that, for a large number of organic and polymeric,
fragile and intermediate glassformers, the use of the equation
of state �EOS�, �=��T , P�, enables one to write the control
parameter ��� ,T� in the simple form

���,T� =
E���
kBT

. �2�

� is separable into the ratio of an energy E��� to the Boltz-
mann factor kBT. In addition, in many �13,14�, but not all
�15�, glass-forming liquids where Eq. �2� holds, the whole �
dynamics measured in dielectric absorption is determined by
the value of �: the spectra measured at different temperatures

and pressures, but for the same relaxation time �, can be
superimposed over a large frequency range around ��=1.

Furthermore, it was found that for all the liquids studies
so far, E��� could be expressed as �8,10–13�

E��� = E0� �

�0
�n

, �3�

where E0, �0, and n are, respectively, a material-dependent
energy, a reference density, and a positive number �16�. The
parameter n is estimated by optimizing the collapse on a
single curve, �=���n /T�, of the various relaxation times
measured at variable temperatures and pressures. Obtained
that way, n is an averaged quantity; i.e., it does not depend
on T and/or �. Yet there is no reason for Eqs. �2� and �3� to
be valid over the whole part of the �� ,T� plane where the
system is a liquid: for example, the pressure exerted on the
system might lead to progressive but substantial changes in
the bonding between molecules or atoms �17�, liable to alter
the simplicity of these equations. A change of fragility and/or
the impossibility of scaling the relaxation times have been
recently reported �18� in different hydrogen-bonding liquids
and proposed to originate from such an effect.

The purpose of this report is to make use of a local
quantity—i.e., defined at each thermodynamic state—
nloc�� ,T�, in order to avoid the averaging process on tem-
perature and density implicitly involved in the determination
of n. Let us consider a small increase 	� of the relaxation
time ��� ,T�. 	� can be written as

	�

�
=

T

�
� ��

�T
�

�

	T

T
+

�

�
� ��

��
�

T

	�

�
=

T

�
� ��

�T
�

�
�	T

T
− nloc

	�

�
� ,

�4�

where nloc�� ,T� is given by

nloc = −

�
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. �5�

The numerator and denominator of Eq. �5� are the dimen-
sionless coefficients introduced by Win and Menon �19�
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which they called, respectively, “generalized isothermal fra-
gility with respect to �” and “generalized isochoric fragility
with respect to T.” In their dielectric study of glycerol, they
pointed out the link between the exponent n of the scaling
law, Eq. �3�, and the ratio of these fragilities, a link which
was later also mentioned by Casalini et al. �20�. When de-
termining the ratio, Eq. �5�, at each thermodynamic state,
Win and Menon found nloc varying between 1.2 and 1.7, a
variation that they tentatively attributed to the different parts
of the potential explored when varying the density. Simulta-
neously, they obtained a rather poor scaling of � using Eqs.
�1�–�3�, the best exponent being n=1.4. Yet in a similar di-
electric study of glycerol, Reiser et al. �21� found that the
same n value gave a rather convincingly scaling of their own
data.

If nloc is independent of � and T, all the solutions of the
partial differential equation for �, Eq. �5�, are functions of the
form �=���n /T� with n=nloc. nloc=n=const is thus a neces-
sary and sufficient condition for the set of equations �2� and
�3� to be valid. Vice versa, to ascertain the possible variation
of nloc requires knowledge of the partial derivatives of � over
a large range of temperature and density. For the time being,
the relative temperature and density ranges explored in most
of the experiments are not larger than 30% �8,10–13,18–21�.
The systematic variations of nloc are smaller than or of the
same order as their experimental uncertainties. As an ex-
ample, the estimates of nloc from the photon correlation data
in ortho-terphenyl �oTP�, discussed in �12�, yield a mean
value 4.25 with a dispersion of 0.15 while the fit of ��� ,T�
leads to n=4.1±0.1. So far, even in experiments exploring a
larger temperature and/or density domain �10–13,18–21�
than in this oTP experiment, one can find a value of n lead-
ing to a scaling, Eq. �3�, of all the data, and the example of
glycerol given above illustrates the difficulty of ascertaining
a variation of nloc.

Numerical simulations provide an alternative, powerful,
route to obtain nloc�� ,T�, as they allow for much larger varia-
tions of � and T. Liquid silica �22,23� has been extensively
studied that way in a very large temperature and density
domain. Moreover, simulated silica is extremely interesting
because, as in water �24�, the diffusion coefficients, here for
oxygen and silicon, increase with increasing density in some
regions of the �� ,T� phase diagram. This implies a corre-
sponding decrease of the structural relaxation time. Accord-
ing to Eq. �5�, it means that nloc must be negative in these
regions, a situation not found in the usual glassformers. In
this paper, it will be shown that, as expected, the large varia-
tions of � or T offered by these computations allow one to
invalidate Eq. �3� and that these variations of nloc are quan-
titatively correlated with the change of bonding which simul-
taneously takes place.

Simulations of silica properties have been recently per-
formed between 2500 K and 7000 K and between
2.3 g cm−3 and 4.2 g cm−3, and have yielded the translational
diffusion coefficients D�� ,T� of oxygen �22� or of silicon
�23�. Horbach and Kob �25� found that the results of similar
simulations performed at ambient pressure are in reasonable
agreement with those obtained on the real strong glass-
forming liquid silica. From these diffusion coefficients, we

first derived a relaxation time � using the Einstein relation
between � and D, �=AT /D�� ,T�, and assuming the coeffi-
cient A to be only weakly dependent on � and T �26� com-
pared to the four orders of magnitude variation of D. The
numerical determination of the partial derivatives � ��

��
�
T and

� ��
�T

�
�, Eq. �5�, was performed as follows: first, the relaxation

times at constant density and variable temperature are fitted
by Vogel-Fulcher laws while those at constant temperature
and variable density are fitted by sigmoid curves; second, the
partial derivatives of these analytical expressions are calcu-
lated at every temperature and density.

The variation of nloc with temperature along various iso-
chors is shown in Fig. 1 �27�. In the inset, nloc is reported
versus density for three temperatures T=2500 K, 4000 K,
and 5500 K. The error 
nloc in nloc introduced by our nu-
merical method has been estimated by considering the
maxima of the diffusion coefficient of the oxygen atom plot-
ted versus the density reported in �22�. These maxima are
located around �=3.4 g cm−3 for temperatures between
2500 K and 4000 K, and, following Eq. �5�, they represent
points of the phase diagram for which nloc=0. The nonzero
values of nloc obtained by our computational method for the
same temperatures and densities provide an estimate 
nloc
�0.25 of the numerical accuracy. Such values are not ex-
pected to change much with temperature and density. The
values of nloc obtained from the diffusion coefficients of oxy-
gen and silicon are in good agreement and, when calculated
for the same density, are within this numerical accuracy. In a
large density range �2.3 g cm−3���3.3 g cm−3�, nloc is ap-
proximately density independent and varies only weakly
with temperature. Its mean value below T=4000 K is nloc=
−1.0, and in the broader temperature domain 2500 K�T
�7000 K, it can be linearly approximated by
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nloc = − 2.0 + 3.1 � 10−4T .

On the contrary, for densities 3.3 g cm−3���3.8 g cm−3,
nloc depends strongly on the density while its temperature
dependence is still weak. Although for �
3.8 g cm−3 simu-
lation data are scarce, the variation of nloc with density and
temperature seems again weak in this domain.

The variation of nloc reported in Fig. 1 is another, original,
way of describing the variation of the diffusion coefficients
already reported in �22,23�. Furthermore, a new and impor-
tant fact emerges: the density-independent and weak
temperature-dependent variation of nloc for ��3.3 g cm−3

contrasts with its strong variation with density for �

3.3 g cm−3. Figure 1 also calls for three remarks.

�i� Qualitatively, as could be anticipated, the scaling �
��n /T is appropriate only in a relatively narrow T and �
range: as soon as the variation of T and/or � exceeds 50%, it
becomes inadequate. This is shown in Fig. 2�A� where � is
plotted versus � for n=−1.05 �best fit coefficient�. The
scaling is good for the temperature-density range
�T=2500–4000 K; �=2.3–3.3 g cm−3�, but fails above
4000 K for the lower densities and at all temperatures for
densities higher than 3.3 g cm−3.

�ii� A second, phenomenological, remark is related to the
systematic variation of nloc with temperature observed in Fig.
1. Assuming that the density dependence of nloc can be ne-
glected with respect to its temperature dependence and solv-
ing the partial derivatives equation defining nloc, Eq. �5�, one
finds that the control parameter � is still the product of the
function E��� given by Eq. �3� by a function of T. Yet that
function is no longer the inverse of the Boltzmann factor but
takes the form f�T� /kBT, where f�T� describes the renormal-
ization of the energy numerator of Eq. �2� by the tempera-
ture. In particular, when nloc may be represented, as is the
case here, by nloc=n�1+�T�, f�T� is also given by the linear
function 1+�T, with n�0 and ��0. Figure 2�B� shows that
this new form of scaling is very effective over the whole

temperature range for densities 2.3 g cm−3���3.3 g cm−3,
even if it appears unphysical at high temperatures, f�T� be-
coming negative for T=7000 K. It is quite remarkable that
such a correction is sufficient to obtain an effective scaling in
the case of simulated silica which, at first sight, is so differ-
ent from the usual organic glass-forming liquids, particularly
concerning the large change of its structure with density
and/or temperature.

�iii� Our final and most important remark is related to a
possible interpretation of the � and T dependence of nloc
shown in Fig. 1. Our motivation for the introduction of nloc
was the idea that Eq. �2� should not remain valid when, e.g.,
pressure would modify the bonding between the constituents
of the supercooled liquid. We can substantiate this idea
through the use of one of the results of Shell et al. �22� who
defined a local orientational order parameter q. The latter is
related to the mean angle � between two Si-Si bonds involv-
ing the same Si atom. With their definition, q=1 for a tetra-
hedral environment ��=109° � and 0.375 for an octahedral
one ��=90° �. The q distribution has been computed �22� for
the density �=3 g cm−3 at different temperatures and exhib-
its a bimodal shape, indicating that these two different envi-
ronments are simultaneously present in the liquid. The first
mode has a maximum at q�0.9, characterizing a high, local,
Si-Si tetrahedral order; the second maximum is at q�0.45
and corresponds approximately to a local octahedral arrange-
ment. This bimodal distribution can be correctly described as
the sum of two Gaussian curves centered at those two q
values and with relative weights Q1 and Q2=1−Q1, respec-
tively. For the q distributions at �=3 g cm−3 reported in �22�,
the weight Q1 varies from 0.45 for T=2500 K to 0.05 for
T=5500 K, with no information at higher temperatures. The
plot of nloc versus Q1 is shown in Fig. 3; its linear variation
shows quantitatively the direct relation between the dynami-
cal quantity nloc and the structural quantity Q1.

To summarize, a weak variation with temperature and
density of nloc�� ,T�, defined by

	�

�
�

	T

T
− nloc

	�

�
, �6�

mathematically translates in the scaling law Eq. �3�. This
variation is not always weak: simulated silica is a counterex-
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FIG. 2. �Color online� Scaling of the relaxation time of Si atoms
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ample. At densities lower that 3.3 g cm−3, it exhibits a large
variation with temperature, passing from a negative �nloc=
−1.0� value at low temperature to a positive value at 7000 K.
We have shown that this variation correlates linearly with the
change of bonding in the liquid. This suggests that the un-
derstanding of the structural arrest may be more complex in
a strong glass-forming liquid like silica than in the fragile

ones because it likely involves changes in the local environ-
ment of a bonded atom that do not take place in the fragile
liquids.
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